A class of Finsler metrics with almost vanishing H-curvature
نویسنده
چکیده
In this paper, we study a class of Finsler metrics with orthogonal invariance. We find an equation that characterizes these Finsler metrics of almost vanishing H-curvature. As a consequence, we show that all orthogonally invariant Finsler metrics of almost vanishing H-curvature are of almost vanishing Ξ-curvature and corresponding one forms are exact, generalizing a result previously only known in the case of metrics with vanishing H-curvature. M.S.C. 2010: 58E20, 53B40.
منابع مشابه
Generalized Douglas-Weyl Finsler Metrics
In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.
متن کاملOn a class of locally projectively flat Finsler metrics
In this paper we study Finsler metrics with orthogonal invariance. We find a partial differential equation equivalent to these metrics being locally projectively flat. Some applications are given. In particular, we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.
متن کاملOn Special Generalized Douglas-Weyl Metrics
In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.
متن کاملOn 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کاملOn C3-Like Finsler Metrics
In this paper, we study the class of of C3-like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.
متن کامل